

Parallel Implementation & Performance Evaluation
of Blast Algorithm on Linux Cluster

Nisha Dhankher , O P Gupta

School of Electrical Engineering & IT

COAE&T, PAU
Ludhiana, India

Abstract-The aim of this paper is to investigate the
performance of parallel implementation of BLAST
algorithm on HPC platform using Infiniband. This
paper described the optimized and extended version of
mpiBLAST called mpiBLAST-PIO. Due to high non-
search overhead, parallel-writing the results by the
slaves evolved as the efficient solution to the problem.
Keywords: Bioinformatics, mpiBLAST, HPC,
Infiniband, Cluster Computing

I. INTRODUCTION
 Genomic sequence-search is a basic problem of
computational biology that has greatly benefited from
parallel and distributed computing. The most widely used
sequence-search tool is BLAST. BLAST is a fast program
that efficiently calculates local pairwise alignment based on
approximation. Through sequence alignment (or sequence
comparison) of two biological sequences, researchers can
find evolutionary information about a new sequence.
Similarities between newly discovered sequence and a
known sequence can help in determining functions of the
new sequence and find sibling species from common
ancestor.
 There are two types of sequence alignment
problems: global and local. The global alignment algorithm
finds the best match between the entire sequences whereas
the local alignment algorithm finds the best match between
parts of the sequences. The first algorithms devised for
sequence-alignment were Needleman Wunsch (1979) and
Smith Waterman (1981). These were based on dynamic
programming and produce optimal solutions but had time
complexity O(n2).
 As a result, heuristic based BLAST algorithm was
proposed by Altschul et al in 1990. BLAST searches a
query sequence containing DNA or proteins against a
database of known nucleotide or peptides sequences in
linear time using a statistical model. BLAST heuristic
search, first, breaks the query into words of length w (by
default w=3) and compare them to each database sequence.
The matching words (or seeds) are then extended in both
the direction until the score of alignment drops below a
threshold to form the High Scoring Segment Pair (HSP).
BLAST2 uses 2 -hit alignment algorithm to find the top-
scoring HSP's which are combined to form consistent local
alignment. BLAST's final result consists of a series of local
alignments, ordered by the similarity score along with an e-
value. BLAST program has the capability to compare all
possible combinations of query and database sequence

types by translating them. BLAST search types are:
1. blastn: search nucleotide database using a nucleotide

query.
2. blastp: searches protein database using a protein

query.
3. blastx: search protein database using a translated

nucleotide query.
4. tblastn: search translated nucleotide database using a

protein query.
5. tblastx: search translated nucleotide database using a

translated nucleotide query.
 Recent advances in molecular biology techniques,
has led to the exponential growth of sequence databases.
Although CPU architectures are struggling to show better
performance, traditional techniques to sequence homology
searches using BLAST have proven to be slow to keep up
with the current rate of sequence acquisition (Kent 2002).
As BLAST is both computationally intensive and
parallelizes well, many parallel and distributed approaches
of parallelizing BLAST have been proposed by
programmers.
The mpiBLAST Algorithm
 mpiBLAST is a freely available open-source
parallelization of National Centre for Biotechnology
Information (NCBI) BLAST, which achieves super linear
speedup by segmenting a BLAST database. It is designed
to work on a computer cluster using MPI library and adopts
a master-slave style. (Darling et al 2003) The mpiBLAST
algorithm consists of three steps:

1. Segmenting and distributing the database,
2. Running mpiBLAST queries on each node,
3. Merging the results from each node into a single

output.
 Before mpiBLAST search, the database is formatted
and segmented using a wrapper called mpiformatdb and
placed at shared storage. mpiBLAST enables the master
node to assign the query sequence and database fragment to
each worker node. The worker nodes perform the BLAST
search on queries and send the results to the master node.
When one worker node complets its task, the master node
assign a new fragment to it. This procedure is repeated until
all the queries have been searched. The master node merge
all the results and sorts them according to score. Results
written in output file can be in any format including XML,
HTML, simple text, ASN.1.
 However, mpiBLAST suffers from non-search
overheads with increasing number of processors and
varying database sizes. So, Lin et al 2005 proposed pio-

Nisha Dhankher et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4818-4820

www.ijcsit.com 4818

BLAST that stands for parallel I/O BLAST and uses MPI-
IO for efficient data access. MPI-IO enables multiple
processors to read or write files simultaneously. (Correa
and Silva 2011) One of pioBLAST's main updates was the
caching of sequences by worker nodes as they find
potential alignments in their partial results. Due to parallel
writing of output, pioBLAST greatly improved the
performance. As a result, some of the pioBLAST's
enhancements were added to mpiBLAST, resulting in the
development of mpiBLAST-PIO, which is the official
version of mpiBLAST since release 1.6 (Lin H et al 2005).
 mpiBLAST-PIO (Thorsen et al 2007, Borovska et al
2010) is optimized and extended version of parallel and
distributed-memory version BLAST. The extensions
include a virtual file-manager, a “multiple master” runtime
model, efficient fragment distribution and intelligent load
balancing.
 This paper presents the experience in mapping and
evaluating both the serial and parallel BLAST algorithm
onto a infiniband based HPC.

II. MATERIAL AND METHODOLOGY
Cluster Hardware
 All the experiments were run on a HPC Linux
cluster installed at Data Centre, SEEIT, PAU. The cluster is
composed of 40 compute nodes, each with two hexa-core
Intel, Xeon 2.93 GHz processors, 12 MB cache , 50 GB
RAM means that there are 480 cores available for
processing. Two head nodes, each with two quad-core
processors and 32 GB RAM are used to manage the cluster.
The intercommunication network between the computing
nodes consists of 40 Gbps Infiniband network, allowing for
highly efficient message passing. The cluster consists of
two 10 Gbps Ethernet switches and five Infiniband Host
channel adapters that supports 4 × QDR.
Software
 The Operating System running on the nodes is
RHEL Server 5.6 with the 2.6.18-238.el5, 2.6.18-
238.el5xen kernel. The cluster includes IBRIX parallel File
System, the software component of the IBRIX is combined
with the HP X9000 series of storage systems. There are
three MPI implementations available in HPC cluster:
OpenMPI, Intel MPI and MPICH2. Among these Intel-MPI
was chosen for the experiment. To manage the MPI jobs,
PBS-PROFESSIONAL 12.0.1 job-scheduler was used. The
latest version of mpiBLAST-1.6.0 available at mpiBLAST
website was compiled and installed. NCBI-BLAST was
compiled from version 2.2.20, downloaded through ftp site
of NCBI.
Experiment Data
 9.38 GB nr database in compressed form was
downloaded from the NCBI-BLAST website through ftp.
The formatting and partitioning of the database into 24
segments of approximately equal size was done by the
command mpiformatdb. In this experiment, 200 nucleotide
sequences of BADH were used as query file of size 240
KB. The computational model was based on data
parallelism, utilizing master-worker paradigm and MPI was
used for data exchange between parallel-processes which
were scheduled to run by PBS.

III. RESULTS AND TABLES
 In this paper, mpiBLAST-PIO performance was
evaluated by measuring speedup and efficiency in
comparison to sequential NCBI BLAST version. The
algorithm run on HPC was blastx that compared the
nucleotide query sequences with the NR database. As
mpiBLAST-1.6.0 allow to run both parallel write and
master write, writing performance of mpiBLAST in high
performance parallel file system was compared.
 In master write, the master process is responsible
for sorting the intermediate results, according to score and
write the final output in the file sequentially. Master-write
has two drawbacks. First, the result processing was
serialized by the master. Second, the master memory may
not be large enough to buffer all intermediate results and
corresponding sequence data. To address the above
problems, parallel-write was activated. In case of parallel-
write, workers after searching their fragment, convert their
intermediate results into the final output and send the final
output metadata to the master. As the size of each result
alignment output is known to master, it computes the offset
ranges for each record and send the information to the
workers. With the output offsets, workers write the local
output records in parallel using the MPI-IO interface. By
locally buffering output and parallel processing the results,
mpiBLAST-PIO removes the performance bottleneck.
 In this test, number of database fragments was
fixed to 24 and number of workers was increased from 24
to 384 cores. The number of fragments was either equal to
or an integral multiple of the number of cores.

Figure1

 In the above figure, performance of master-write,
parallel-write and parallel-write along with query
segmentation size set to 5, were compared. Figure shows
that parallel write performed faster than the master write. It
was also observed that query distribution along with
database segmentation yields good results with increasing
number of processes. In figure 2, Speedup of the
mpiBLAST-PIO program was plotted against the number
of cores. In this study, the Speedup was defined and
evaluated as the ratio of time to run sequential algorithm
NCBI-BLAST on single core to the time taken to run

Nisha Dhankher et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4818-4820

www.ijcsit.com 4819

parallel algorithm mpiBLAST-PIO. From this evaluation, it
was concluded that mpiBLAST-PIO achieves super-linear
speedup when number of slaves were increased up to 384.
The experiment results demonstrated that maximum
efficiency achieved was 51% when mpiBLAST-PIO was
executed on 48 cores with 24 database fragments. After this
point, efficiency starts decreasing.

Figure 2

IV. CONCLUSION

 This paper evaluated I/O and communication
related optimizations for parallel sequence search using
BLAST. Such optimizations include the use of parallel-
write option for efficient handling of I/O. This paper
showed that mpiBLAST-PIO gave performance gain over
mpiBLAST with master write. Also, use of query
distribution along with database segmentation resulted in
reduced execution time. mpiBLAST-PIO gave optimum
efficiency when number of cores was double the number of
database fragments.

ACKNOWLEDGEMENT
 We would like to express our gratitude to Sanjiv
Tiwari of Locuz Enterprise and Inderjit Singh Yadav of
Biotechnology department for helping us in the work. We
would like thank our department teachers Amarjeet Singh,
Arun who helped in maintaining the HPC system work
smoothly.

REFERENCES
i. Archuleta J, Balaji P, Coghlan S, Feng W, Foster I, Jha S, Katz D S,

Lin H, Lusk E, Matsuoka S ,Reed D, Setubal J, Shinpaugh K,
Thakur R and Warren A (2008) Distributed I/O with ParaMEDIC:
Experiences with a Worldwide Supercomputer. Proceedings of
ISC'08.

ii. Archuleta J, Feng W, Gardner M K, Lin H and Ma X (2006) Parallel
genomic sequence searching on an Ad-Hoc grid:
Experiences, Lessons Learned and Implications. SC'06 Proceedings
of ACM/IEEE conference on supercomputing. Tampa, Florida, USA.

iii. Balaji P, Feng W, Archuleta J, Lin H, Kettimuthu R, Thakur R and
Ma X (2008a) Semantics-based Distributed I/O for mpiBLAST.
PPoPP'08. Pp 293-294.

iv. Balaji P, Feng W and Lin H (2008b) Semantic based Distributed I/O

with the ParaMEDIC Framework. HPDC'08. pp 175-184. Boston,
Massachusetts, USA.

v. Braun R C, Pedretti K T, Casavant T L, Scheetz T E, Birkett C L and
Roberts C A (2001) Parallelization of local BLAST service on
workstation clusters. Future Generation Computer Systems 17:745-
754.

v. Lin H, Balaji P, Feng W C, Ma X, Poole R and Sosa C (2008)
Massively Parallel genomic sequence search on the Blue
Gene/Parchitecture. SC2008. Austin, Texas, USA.

vi. Borovska P, Gancheva V and Markov S (2011) Parallel performance
evaluation of sequence nucleotide alignment on the Supercomputer
BlueGene/P. Proceedings of the ECC'11. Pp 462-467.

vii. Borovska P, Gancheva V, Georgiev I and Nakov O (2010) Parallel
genome sequence searching on supercomputer
BlueGene/P. Proceedings of ECS'10/ ECCTD'10/ ECCOM'10/
ECCS'10. Pp: 27-31

viii. Carey L, Darling A E and Feng W (2003) The Design,
implementation and evaluation of mpiBLAST. Proceedings of the 4th
International Conference on Linux Clusters.

ix. Chandramohan P, Geist A, Lin H, Ma X and Samatova N (2005)
Efficient data access for Parallel BLAST. 19th IEEE International
Parallel and Distributed Processing Symposium 01:72-82.

x. Correa J C and Silva G P (2011) Parallel BLAST analysis and
performance evaluation. Proceedings of the BICOB-2011.

xi. Feng W (2003) Green Destiny + mpiBLAST = Bioinformagic. 10th
International Conference on Parallel Computing: Bioinformatics
Symposium

xii. Feng W, Lin H, Ma X and Samatova N F (2011) Coordinating
computation and I/O in massively parallel sequence search.
IEEE Transactions on Parallel & Distributed Systems 22:529-543.

xiii. Feng W C, Jiang K, Lin H, Peters A, Smith B, Sosa C P and
Thorsen O (2007) Parallel genomic sequence search on a massively
parallel system. ACM Proceedings 4th International Conference on
Computing Frontiers. Pp: 59-68. Ischia, Italy.

xiv. Kent W J (2002). Blat- The BLAST-Like Alignment Tool. Genome
Research 12:656-664.

xv. Kuo Y L and Yang C T (2003) Apply Parallel bioinformatics
applications on Linux PC Clusters. Tunghai Science. Pp: 125-141.

xvi. Lantz E, Musselman R, Pinnow K, Rangwala H, Smith B and
Wallenfelt B (2005) Massively Parallel BLAST for the Blue Gene/L.
High Availability and Performance Computing Conference.

xvii. Lifschitz S, Sousa D X D and Valduriez P (2008). BLAST
parallelization on partitioned databases with primary fragments.
High Performance Computing for Computational Science- VECPAR
5336:544-554.

xviii. Mathog R D (2003) Parallel BLAST on split databases. Oxford
University Press 19:1865-1866.

xix. Mulhem M A, Sait S M and Shaikh R A (2011) Evaluating BLAST
runtime using NAS based high performance clusters. Proceedings of
the CIMSIM'11. Pp:51-56.

xx. Mulhem M A and Shaikh R A (2013) Performance modelling of
parallel BLAST using Intel and PGI compilers on an infiniband-
based HPC cluster. International Journal of Bioinformatics
Research and Applications 9:534 (Abstr).

xxi. Muralidhara B L (2013) Parallel two master method to improve
BLAST algorithm’s performance. International Journal of Computer
Applications 63:0975-8887.

xxii. Oehman C S and Baxter D J (2013) ScalaBLAST 2.0: rapid and
robust BLAST calculations on multiprocessor systems.
Bioinformatics oxford journals 29:797-798 .

xxiii. Zomaya A Y (ed) (2006). Parallel Computing For Bionformatics
and Computational Biology. pp 221-226. John Wiley & Sons Inc,
New Jersey.

xxiii. mpiBLAST website, http://www.mpiblast.org
xxiv.National Centre for Bioinformatics website:

http://www.ncbi.nlm.nih.gov/nuccore

Nisha Dhankher et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4818-4820

www.ijcsit.com 4820

